Electromagnetic Waves in Media with Ferromagnetic Losses
نویسنده
چکیده
The operation of a wide variety of applications in today’s modern society are heavily dependent on the magnetic properties of ferromagnetic materials and their interaction with electromagnetic fields. The understanding of these interactions and the associated loss mechanisms is therefore crucial for the improvement and future development of such applications. This thesis is concerned with electromagnetic waves in media with ferromagnetic losses. We model the dynamics of the magnetization of a ferromagnetic material with the nonlinear Landau-Lifshitz-Gilbert (LLG) equation and study stability conditions on static solutions. Furthermore, with the aid of a small signal analysis this equation is linearized around a stable static solution. From this analysis we obtain a small signal permeability, which shows that ferromagnetic material in general are gyrotropic with a resonant frequency behavior similar to that of a Lorentz material. In difference to dielectric Lorentz material, this resonance frequency can be shifted with the aid of a bias field. For a specific bias field we obtain a frequency behavior that mimics that of a material with electric conductivity losses. In terms of losses per unit volume it is then possible to define a magnetic conductivity which is independent of frequency. We treat composite materials built from ferromagnetic inclusions in a nonmagnetic and nonconductinig background material. The composite material inherits the gyrotropic structure and resonant behavior of the single particle. The resonance frequency of the composite material is found to be independent of the volume fraction, unlike dielectric composite materials. For small enough particles, typically around 100 nm, it becomes energetically favorable to form a single domain in the particle, where disturbances in the magnetization can propagate in the form of spin waves. We study the possibility of exciting spin waves and derive a susceptibility that takes spin waves into account. It is found that spin wave resonances are excited in the gigahertz range and this could offer a way to increase the losses in a composite material. We also discuss some concerns regarding stability and causality of effective material parameters for biased ferromagnetic materials. Finally, we discuss the possibility of using magnetic materials in absorbing applications. We analyze the scattering of electromagnetic waves from a metal surface covered with a thin magnetic lossy sheet. It is found that very thin magnetic layers can provide substantial specular absorption over a wide frequency band. However, magnetic specular absorbers, where the waves propagates just a fraction of the wavelength in the material, seem to require a certain amount of ferromagnetic material which make them quite heavy and thereby limit its practical use. On the other hand, for nonspecular absorbers where the waves propagates several wavelengths in the material, the amount of magnetic material required for efficient absorption seems to be substantially less than for specular absorbers. Thus, as nonspecular absorbers, magnetic lossy materials could offer very thin and light designs.
منابع مشابه
A New Theorem Concerning Scattering of Electromagnetic Waves in Multilayered Metamaterial Spherical Structures
The proposed theorem in this paper is indicative of a kind of duality in the propagation of waves in the dual media of and in the spherical structures. Independent of wave frequency, the number of layers, their thickness, and the type of polarization, this theorem holds true in case of any change in any of these conditions. Theorem: Consider a plane wave incident on a multilayered spheric...
متن کاملTransient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses
We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals MPCs with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the asymmetric dispersion diagram and unidirectional frozen modes. The a...
متن کاملElectromagnetic waves a new tool for cellular communications
Distant cells can communicate with each other in a variety of ways. Electrical and chemical mechanisms are two known mechanisms for the establishment of intercellular connections. In recent years, research has shown that many cells influence each other's behavior by sending electromagnetic waves together. The existence of such connections can justify many unknown cellular behaviors. The article...
متن کاملGeneration of horizontally polarized shear waves in ferromagnetic materials using magnetostrictively coupled meander‐coil electromagnetic transducers
متن کامل
Antibacterial Susceptibility Pattern of the Pseudomonas aeruginosa and Staphylococcus aureus after Exposure to Electromagnetic Waves Emitted from Mobile Phone Simulator
Background: The increasing use of telecommunication devices such as Wi-Fi modems and mobile phones in the recent years can change the cellular structure of microorganisms so the generation of electromagnetic waves has led to concern in the community whenever be exposed to these fields and may have harmful effects on human health.Material and Methods: Standard strains of bacteria were prepared o...
متن کامل